

Forecasting Outbreaks (Part 3)

Prof. Dr. Axel Kroeger

Albert-Ludwigs-Universität Freiburg - Centre for Medicine and Society, Germany

Ass. Prof. Dr. Laith Hussain

University of Gothenburg, Sweden

Supported by TDR and ECH WHO, Geneva

Supported by TDR and ECH WHO, Geneva; Freiburg University, Germany; Gothenburg University, Sweden

Definitions (3): Lag time

• The Lag time or prediction period is the number of weeks from alarm signal to start of the outbreak

The lag time depends particularly on climate variables:

- **Short lag time** = favourable meteorological conditions for vectors (higher temperature and humidity, rainfall)
- Long lag time = Unfavourable conditions for the vector e.g. too hot, too cold, too much rain, too dry

The EARLY WARNING AND RESPONSE SYSTEM (EWARS plus, TDR/WHO)

- The development and validation
- Literature reviews
- How is EWARS used by countries?
- How has it been tested so far

Co-designing the EWARS development maintained participation of all partner countries

The 'designers' of the new system (expert panel, statistical modellers, entomologists and Global entities; WHO-TDR, PAHO, SEARO epidemiologists) Directorate of national surveillance program and vector Districts health control managers Users from district levels who will be using the **EWARS** Local Meteorological stations (with MOUs)

Co-design approach

"Co-design involves and maintains working together to design a new product, making full use of each other's knowledge, resources and contributions, to achieve better outcomes or improved efficiency"

4

Brief history of EWARS development

CHARACTERISTICS OF EWARS TDR/WHO (1)

ONE HUB: https://alramadona.shinyapps.io/Ewars_dashboard/

Officers at national level (Dashboard I)

- Ist dashboard: validate model ++ oversee the outbreak prediction at district level ++ train sub-national level
- Parameters are automatically and instantly linked to subnational level via web
- □ Officers at district/ municipality level
- 2nd dashboard: weekly prospective data input, interpretation & action
- □ This platform facilitates a free sustainable DATABASE for the surveillance data

CHARACTERISTICS(2): Calibrating the model using first half of data

Define «outbreak threshold» and find best district outbreak indicator

Identify «alarm indicators» and thresholds for alarm signals

RETROSPECTIVE STUDY

Run-in phase (Dashboard I)

Defining prediction distance (time lag) that best suits the disease and alarm indicators profile

Generate graphical assessment for defining adequate endemic channel level, adjusting for endemic severity and adjusting for seasonality

CHARACTERISTICS(3): Evaluating the model using second half of data

Determining validity of prediction (Dashboard I, evaluation phase)

Sensitivity (of the alarm)

The proportion of alarms that successfully predict defined outbreaks

i.e. no. of correct outbreak alarms/ total outbreaks

PPV

(Positive Predictive Value)

The proportion of true alarms out of all alarms i.e. no. of correct alarm periods/ total no. of alarm periods

Examples:

Sensitivity = 90%
9 out of 10 outbreaks have been correctly detected

PPV= 70%
7 out of ten alarm singals were correct

EXAMPLE for validity testing of outbreak alarms: PPV and Sensitivity (Mexico)

Alarm Indicator	Outbreak indicator	Positive Predictive Value (%)	Sensitivity (%)
mean temp	hospitalized cases	72	81
rainfall	hospitalized cases	65	87
mean age	hospitalized cases	74	89
probable cases	hospitalized cases	83	100
Ovitrap (%positive traps)	hospitalized cases	60	79
humidity	hospitalized cases	50	94
Serotype	hospitalized cases	75	100
multiple indicators*	hospitalized cases	77	84

* temperature, rainfall, mean age, probable cases, positive ovitrap & humidity

CHARACTERISTICS(4): **Spatial analysis**

- Provides a rapid visual summary of spatial information
- Crucial for describing the spatial and temporal variation of the disease
- Identifies areas of unusually high risk areas (hot spots)

Dengue Risk Map 2012/11/8 High risk Moderate risk Low risk No risk 8 Kilometers

Source: Ciaran Nugent, Forest Service, Department of Agriculture, Food and the Marine (DAFM).

Staged response to an outbreak

BACKGROUND READING

Evidence-based tool

PLOS ONE

Early warning and response system (EWARS) for dengue outbreaks: Recent advancements towards widespread applications in critical settings

Laith Hussain-Alkhateeb 🔄, Axel Kroeger, Piero Olliaro, Joacim Rocklöv, Maquins Odhiambo Sewe, Gustavo Tejeda, David Benitez, Balvinder Gill, S. Lokman Hakim, Roberta Gomes Carvalho, Leigh Bowman, Max Petzold

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0196811

PLOS NEGLECTED TROPICAL DISEASES

REVIEW

Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review

Laith Hussain-Alkhateeb^{1*}, Tatiana Rivera Ramírez², Axel Kroeger², Ernesto Gozzer³, Silvia Runge-Ranzinger^{2,4} Supported by the

Federal Ministry of Health

Policy Brief

Innovation and Collaboration: the EWARS Framework for infectious diseases

PLOS ONE

RESEARCH ARTICLE

Alarm Variables for Dengue Outbreaks: A Multi-Centre Study in Asia and Latin America

Leigh R. Bowman^{1,5}*, Gustavo S. Tejeda², Giovanini E. Coelho³, Lokman H. Sulaiman⁴, Balvinder S. Gill⁴, Philip J. McCall¹, Piero L. Olliaro⁵, Silvia R. Ranzinger^{5,6}, Luong C. Quang⁷, Ronald S. Ramm⁸, Axel Kroeger^{1,5}, Max G. Petzold^{5,9}

(lps.//www.who.int/publications/l/item/1000554555

https://apps.who.int/iris/handle/10665/332323

World Health TDRM for research on dosaus of powerty

NE

For research on diseases of poverty UNICEF • UNDP • World Bank • WHO In partnership with

